Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Front Immunol ; 13: 830061, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2198803

RESUMEN

Introduction: Resistin is reported to form a cytokine network and cause endothelial damage. The pathogenesis of coronavirus disease 2019 (COVID-19) remains unknown, but the association between cytokine storm and endothelial damage is crucial. This study aimed to evaluate resistin in COVID-19 pathogenesis compared with sepsis. Materials and Methods: First, we evaluated the association of plasma resistin levels and disease severity and clinical outcome in two large cohorts: a publicly available cohort including 306 COVID-19 patients in the United States (MGH cohort) and our original cohort including only intubated 113 patients in Japan (Osaka cohort 1). Second, to understand pathogenesis, we evaluate resistin, cytokines and endothelial cell adhesion molecules in COVID-19 compared with sepsis. Blood samples were collected from 62 ICU-treated COVID-19 patients and 38 sepsis patients on day 1 (day of ICU admission), days 2-3, days 6-8, and from 18 healthy controls (Osaka cohort 2). The plasma resistin, inflammatory cytokines (IL-6, IL-8, MCP-1 and IL-10) and endothelial cell adhesion molecules (ICAM-1 and VCAM-1) were compared between patients and control. Correlations among resistin, inflammatory cytokines and endothelial cell adhesion molecules were evaluated in COVID-19 and sepsis. Results: In the MGH cohort, the day 1 resistin levels were associated with disease severity score. The non-survivors showed significantly greater resistin levels than survivors on days 1, 4 and 8. In the Osaka cohort 1, 28-day non-survivors showed significantly higher resistin levels than 28-day survivors on days 6-8. Patients with late recovery (defined as the day of weaning off mechanical ventilation >12 or death) had significantly higher resistin levels than those with early recovery on day 1 and days 6-8. In the Osaka cohort 2, plasma resistin levels were elevated in COVID-19 and sepsis patients compared to controls at all measurement points and were associated with inflammatory cytokines and endothelial cell adhesion molecules. Conclusion: Resistin was elevated in COVID-19 patients and was associated with cytokines and endothelial cell adhesion molecules. Higher resistin levels were related to worse outcome.


Asunto(s)
COVID-19 , Sepsis , Citocinas , Humanos , Resistina , Sepsis/metabolismo , Molécula 1 de Adhesión Celular Vascular
2.
Front Immunol ; 13: 941742, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2154719

RESUMEN

Background: Thromboinflammation may influence disease outcome in COVID-19. We aimed to evaluate complement and endothelial cell activation in patients with confirmed COVID-19 compared to controls with clinically suspected but excluded SARS-CoV-2 infection. Methods: In a prospective, observational, single-center study, patients presenting with clinically suspected COVID-19 were recruited in the emergency department. Blood samples on presentation were obtained for analysis of C5a, sC5b-9, E-selectin, Galectin-3, ICAM-1 and VCAM-1. Results: 153 cases and 166 controls (suffering mainly from non-SARS-CoV-2 respiratory viral infections, non-infectious inflammatory conditions and bacterial pneumonia) were included. Hospital admission occurred in 62% and 45% of cases and controls, respectively. C5a and VCAM-1 concentrations were significantly elevated and E-selectin concentrations decreased in COVID-19 out- and inpatients compared to the respective controls. However, relative differences in outpatients vs. inpatients in most biomarkers were comparable between cases and controls. Elevated concentrations of C5a, Galectin-3, ICAM-1 and VCAM-1 on presentation were associated with the composite outcome of ICU- admission or 30-day mortality in COVID-19 and controls, yet more pronounced in COVID-19. C5a and sC5b-9 concentrations were significantly higher in COVID-19 males vs. females, which was not observed in the control group. Conclusions: Our data indicate an activation of the complement cascade and endothelium in COVID-19 beyond a nonspecific inflammatory trigger as observed in controls (i.e., "over"-activation).


Asunto(s)
COVID-19 , Trombosis , Biomarcadores , Proteínas del Sistema Complemento , Selectina E , Células Endoteliales , Femenino , Galectina 3 , Humanos , Inflamación , Molécula 1 de Adhesión Intercelular , Masculino , Estudios Prospectivos , SARS-CoV-2 , Molécula 1 de Adhesión Celular Vascular
3.
Redox Biol ; 56: 102465, 2022 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2105815

RESUMEN

BACKGROUND: The pathophysiologic significance of redox imbalance is unquestionable as numerous reports and topic reviews indicate alterations in redox parameters during corona virus disease 2019 (COVID-19). However, a more comprehensive understanding of redox-related parameters in the context of COVID-19-mediated inflammation and pathophysiology is required. METHODS: COVID-19 subjects (n = 64) and control subjects (n = 19) were enrolled, and blood was drawn within 72 h of diagnosis. Serum multiplex assays and peripheral blood mRNA sequencing was performed. Oxidant/free radical (electron paramagnetic resonance (EPR) spectroscopy, nitrite-nitrate assay) and antioxidant (ferrous reducing ability of serum assay and high-performance liquid chromatography) were performed. Multivariate analyses were performed to evaluate potential of indicated parameters to predict clinical outcome. RESULTS: Significantly greater levels of multiple inflammatory and vascular markers were quantified in the subjects admitted to the ICU compared to non-ICU subjects. Gene set enrichment analyses indicated significant enhancement of oxidant related pathways and biochemical assays confirmed a significant increase in free radical production and uric acid reduction in COVID-19 subjects. Multivariate analyses confirmed a positive association between serum levels of VCAM-1, ICAM-1 and a negative association between the abundance of one electron oxidants (detected by ascorbate radical formation) and mortality in COVID subjects while IL-17c and TSLP levels predicted need for intensive care in COVID-19 subjects. CONCLUSION: Herein we demonstrate a significant redox imbalance during COVID-19 infection affirming the potential for manipulation of oxidative stress pathways as a new therapeutic strategy COVID-19. However, further work is requisite for detailed identification of oxidants (O2•-, H2O2 and/or circulating transition metals such as Fe or Cu) contributing to this imbalance to avoid the repetition of failures using non-specific antioxidant supplementation.


Asunto(s)
COVID-19 , Antioxidantes/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres , Humanos , Peróxido de Hidrógeno , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-17/metabolismo , Nitratos , Nitritos , Oxidantes/metabolismo , Oxidación-Reducción , Estrés Oxidativo , ARN Mensajero/metabolismo , Ácido Úrico , Molécula 1 de Adhesión Celular Vascular/metabolismo
4.
Vasa ; 51(6): 341-350, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-2096638

RESUMEN

Vascular adhesion protein-1 (VAP-1) also known as amino oxidase copper containing 3 (AOC3) is a pro-inflammatory and versatile molecule with adhesive and enzymatic properties. VAP-1 is a primary amine oxidase belonging to the semicarbazide-sensitive amine oxidase (SSAO) family, which catalyzes the oxidation of primary amines leading to the production of ammonium, formaldehyde, methylglyoxal, and hydrogen peroxide. VAP-1 is mainly expressed by endothelial cells, smooth muscle cells, adipocytes and pericytes. It is involved in a repertoire of biological functions, e.g., immune cell extravasation, angiogenesis, and vascularization. Research into VAP-1 has intensified within the last decade on its role as a novel clinical biomarker and as a potential therapeutic target of vascular inflammatory disorders such as atherosclerosis, stroke, diabetes, neurovascular disorders (e.g., Alzheimer's Disease), hepatic disease (e.g., non-alcoholic steatohepatitis), and skin conditions (e.g., psoriasis). This is the most up-to-date and comprehensive review on VAP-1 focusing on the translational aspects of VAP-1. Compared to recent reviews, our review provides novel insights on VAP-1 and heart failure, stroke and frailty, diabetes, endometriosis, osteoarthritis, COVID-19, conjunctivitis associated systemic lupus erythematosus, hematopoietic stem cells, gliomas, treatment of colorectal cancer with a novel VAP-1 inhibitor (U-V269), promoting recovery of motor functions and habit learning with a novel VAP-1 inhibitor (PXS-4681A), and 68Ga-DOTA-Siglec-9, a labelled peptide of Siglec-9 (a VAP-1 ligand), which appears to be a safe PET tracer for inflammation in rheumatoid arthritis. Finally, we present the emerging role of VAP-1 in pregnancy as a gatekeeper of immune cells, which are critical for spiral arterial remodeling, the deficiency of which could lead to vascular disorders of pregnancy such as preeclampsia. Future research should prioritize clinical trials on VAP-1 small-molecule inhibitors and monoclonal antibodies, thus, maximizing the potential of VAP-1 targeted therapy as well as research into sVAP-1 as a clinical biomarker of diseases and its prognosis.


Asunto(s)
Amina Oxidasa (conteniendo Cobre) , Aterosclerosis , COVID-19 , Diabetes Mellitus , Accidente Cerebrovascular , Femenino , Humanos , Células Endoteliales , Moléculas de Adhesión Celular/uso terapéutico , Amina Oxidasa (conteniendo Cobre)/uso terapéutico , Molécula 1 de Adhesión Celular Vascular , Biomarcadores , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/uso terapéutico
5.
Mol Med ; 28(1): 122, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2064734

RESUMEN

BACKGROUND: Long-COVID is characterized by prolonged, diffuse symptoms months after acute COVID-19. Accurate diagnosis and targeted therapies for Long-COVID are lacking. We investigated vascular transformation biomarkers in Long-COVID patients. METHODS: A case-control study utilizing Long-COVID patients, one to six months (median 98.5 days) post-infection, with multiplex immunoassay measurement of sixteen blood biomarkers of vascular transformation, including ANG-1, P-SEL, MMP-1, VE-Cad, Syn-1, Endoglin, PECAM-1, VEGF-A, ICAM-1, VLA-4, E-SEL, thrombomodulin, VEGF-R2, VEGF-R3, VCAM-1 and VEGF-D. RESULTS: Fourteen vasculature transformation blood biomarkers were significantly elevated in Long-COVID outpatients, versus acutely ill COVID-19 inpatients and healthy controls subjects (P < 0.05). A unique two biomarker profile consisting of ANG-1/P-SEL was developed with machine learning, providing a classification accuracy for Long-COVID status of 96%. Individually, ANG-1 and P-SEL had excellent sensitivity and specificity for Long-COVID status (AUC = 1.00, P < 0.0001; validated in a secondary cohort). Specific to Long-COVID, ANG-1 levels were associated with female sex and a lack of disease interventions at follow-up (P < 0.05). CONCLUSIONS: Long-COVID patients suffer prolonged, diffuse symptoms and poorer health. Vascular transformation blood biomarkers were significantly elevated in Long-COVID, with angiogenesis markers (ANG-1/P-SEL) providing classification accuracy of 96%. Vascular transformation blood biomarkers hold potential for diagnostics, and modulators of angiogenesis may have therapeutic efficacy.


Asunto(s)
Biomarcadores , COVID-19 , Biomarcadores/sangre , COVID-19/complicaciones , Estudios de Casos y Controles , Endoglina , Femenino , Humanos , Integrina alfa4beta1 , Molécula 1 de Adhesión Intercelular , Metaloproteinasa 1 de la Matriz , Neovascularización Patológica , Molécula-1 de Adhesión Celular Endotelial de Plaqueta , Trombomodulina , Molécula 1 de Adhesión Celular Vascular , Factor A de Crecimiento Endotelial Vascular , Factor D de Crecimiento Endotelial Vascular , Síndrome Post Agudo de COVID-19
6.
BMC Complement Med Ther ; 22(1): 242, 2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: covidwho-2043124

RESUMEN

BACKGROUND: Ecklonia cava is an edible marine brown alga harvested from the ocean that is widely consumed in Asian countries as a health-promoting medicinal food The objective of the present study is to evaluate the anti-asthma mechanism of a new functional food produced by bioprocessing edible algae Ecklonia cava and shiitake Lentinula edodes mushroom mycelia and isolated fractions. METHODS: We used as series of methods, including high performance liquid chromatography, gas chromatography, cell assays, and an in vivo mouse assay to evaluate the asthma-inhibitory effect of Ecklonia cava bioprocessed (fermented) with Lentinula edodes shiitake mushroom mycelium and its isolated fractions in mast cells and in orally fed mice. RESULTS: The treatments inhibited the degranulation of RBL-2H3 cells and immunoglobulin E (IgE) production, suggesting anti-asthma effects in vitro. The in vitro anti-asthma effects in cells were confirmed in mice following the induction of asthma by alumina and chicken egg ovalbumin (OVA). Oral administration of the bioprocessed Ecklonia cava and purified fractions suppressed the induction of asthma and was accompanied by the inhibition of inflammation- and immune-related substances, including eotaxin; thymic stromal lymphopoietin (TSLP); OVA-specific IgE; leukotriene C4 (LTC4); prostaglandin D2 (PGD2); and vascular cell adhesion molecule-1 (VCAM-1) in bronchoalveolar lavage fluid (BALF) and other fluids and organs. Th2 cytokines were reduced and Th1 cytokines were restored in serum, suggesting the asthma-induced inhibitory effect is regulated by the balance of the Th1/Th2 immune response. Serum levels of IL-10, a regulatory T cell (Treg) cytokine, were increased, further favoring reduced inflammation. Histology of lung tissues revealed that the treatment also reversed the thickening of the airway wall and the contraction and infiltration of bronchial and blood vessels and perialveolar inflammatory cells. The bioprocessed Ecklonia cava/mushroom mycelia new functional food showed the highest inhibition as compared with commercial algae and the fractions isolated from the bioprocessed product. CONCLUSIONS: The in vitro cell and in vivo mouse assays demonstrate the potential value of the new bioprocessed formulation as an anti-inflammatory and anti-allergic combination of natural compounds against allergic asthma and might also ameliorate allergic manifestations of foods, drugs, and viral infections.


Asunto(s)
Agaricales , Antialérgicos , Antiasmáticos , Asma , Phaeophyceae , Hongos Shiitake , Óxido de Aluminio/efectos adversos , Animales , Antialérgicos/efectos adversos , Antiasmáticos/farmacología , Antiinflamatorios/farmacología , Asma/tratamiento farmacológico , Citocinas/metabolismo , Inmunoglobulina E , Inflamación/tratamiento farmacológico , Interleucina-10 , Leucotrieno C4/efectos adversos , Ratones , Ratones Endogámicos BALB C , Micelio , Ovalbúmina/efectos adversos , Phaeophyceae/metabolismo , Prostaglandina D2/efectos adversos , Hongos Shiitake/metabolismo , Molécula 1 de Adhesión Celular Vascular/efectos adversos
7.
Front Immunol ; 13: 964179, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1987498

RESUMEN

Abnormal inflammatory mediator concentrations during SARS-CoV-2 infection may represent disease severity. We aimed to assess plasma inflammatory mediator concentrations in patients with SARS-CoV-2 in Addis Ababa, Ethiopia. In this study, 260 adults: 126 hospitalized patients with confirmed COVID-19 sorted into severity groups: severe (n=68) and mild or moderate (n=58), and 134 healthy controls were enrolled. We quantified 39 plasma inflammatory mediators using multiplex ELISA. Spearman rank correlation and Mann-Whitney U test were used to identify mechanistically coupled inflammatory mediators and compare disease severity. Compared to healthy controls, patients with COVID-19 had significantly higher levels of interleukins 1α, 2, 6, 7, 8, 10 and 15, C-reactive protein (CRP), serum amyloid A (SAA), intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion protein 1 (VCAM-1), IFN-γ-inducible protein-10 (IP-10, CXCL10), macrophage inflammatory protein-1 alpha (MIP-1α, CCL3), eotaxin-3 (CCL26), interferon-gamma (IFN-γ), tumor necrosis factor-α (TNF-α), basic fibroblast growth factor (bFGF), placental growth factor (PlGF), and fms-like tyrosine kinase 1 (Flt-1). Patients with severe COVID-19 had higher IL-10 and lower macrophage-derived chemokine (MDC, CCL22) compared to the mild or moderate group (P<0.05). In the receiver operating characteristic curve, SAA, IL-6 and CRP showed strong sensitivity and specificity in predicting the severity and prognosis of COVID-19. Greater age and higher CRP had a significant association with disease severity (P<0.05). Our findings reveal that CRP, SAA, VCAM-1, CXCL10, CCL22 and IL-10 levels are promising biomarkers for COVID-19 disease severity, suggesting that plasma inflammatory mediators could be used as warning indicators of COVID-19 severity, aid in COVID-19 prognosis and treatment.


Asunto(s)
COVID-19 , Mediadores de Inflamación , Adulto , Proteína C-Reactiva/metabolismo , Etiopía , Femenino , Humanos , Interleucina-10 , Factor de Crecimiento Placentario , SARS-CoV-2 , Proteína Amiloide A Sérica/análisis , Molécula 1 de Adhesión Celular Vascular
8.
J Food Biochem ; 46(10): e14352, 2022 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1961634

RESUMEN

Dry eye disease (DED) is a complex ocular surface inflammatory disease. Its occurrence varies widely over the world, ranging from 5% to 34%. The use of preservatives, specifically benzalkonium chloride, in the ocular drops worsens the DED conditions. Furthermore, the Covid-19 pandemic increased screen time and the use of face masks and shields. As a result, the number of people suffering from dry eye disease (DED) has increased significantly in recent years. The main objective of our study is to find a solution to manage the dry eye disease (DED) preferably from natural source without any adverse events. In this study, the beneficial effects of capsanthin from Capsicum annum (CCA) were evaluated on benzalkonium chloride (BAC)-induced dry eye disease (DED) in Albino Wistar rats. Oral supplementation of CCA resulted in a statistically significant decrease in intraocular pressure (IOP) (p < .0001), increase in tear break-up time (TBUT) (p < .01), decline in Schirmer test results (p < .01), and decrease in corneal surface inflammation (p < .01). Capsanthin ameliorated in reducing oxidative stress by increasing serum antioxidant levels such as glutathione peroxidase (GPX), nitric oxide (NO), and lactoferrin (LTF) and inhibiting matrix metalloproteinases 2 and 9 (MMP2 and MMP9) (p < .0001). Capsanthin treatment significantly inhibited the expression of inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukins (IL-2, IL-4, IL-6), and pro-inflammatory mediator, matrix metalloproteinase-9 (MMP9). Furthermore, the lacrimal gland expressed vascular cell adhesion molecule (VCAM-1), and prostaglandin-endoperoxide synthase 2 (PTGS2) was suppressed by CCA treatment. PRACTICAL APPLICATIONS: Benzalkonium chloride (BAC), a preservative widely used in the topical ocular drug delivery system (ODDS), causes undesirable effects such as dry eye disease as well as ameliorating intraocular pressure leading to optical nerve damage and irreversible vision loss. Capsanthin from Capsicum annum (CCA) can be used to treat symptoms related to dry eye disease such as inflammation, eye irritation, visual disturbance, ocular discomfort with potential damage to the ocular surface. The CCA may be beneficial in the treatment of glaucoma, an elevated intraocular pressure. Capsanthin from C. annum can be useful in managing DED by increasing tear break-up time (TBUT), declining in Schirmer test results and decreasing in corneal surface inflammation.


Asunto(s)
COVID-19 , Capsicum , Síndromes de Ojo Seco , Animales , Antiinflamatorios/farmacología , Antioxidantes/uso terapéutico , Compuestos de Benzalconio , Ciclooxigenasa 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Síndromes de Ojo Seco/inducido químicamente , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/genética , Frutas/metabolismo , Expresión Génica , Glutatión Peroxidasa/metabolismo , Humanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Mediadores de Inflamación , Interleucina-2/metabolismo , Interleucina-4 , Interleucina-6/metabolismo , Lactoferrina/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Óxido Nítrico/metabolismo , Pandemias , Ratas , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Xantófilas
9.
Front Immunol ; 13: 879033, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1933662

RESUMEN

Clinical observations have shown that obesity is associated with the severe outcome of SARS-CoV-2 infection hallmarked by microvascular dysfunction in the lungs and other organs. Excess visceral fat and high systemic levels of adipose tissue (AT) derived mediators such as leptin and other adipokines have also been linked to endothelial dysfunction. Consequently, we hypothesized that AT-derived mediators may exacerbate microvascular dysfunction during of SARS-CoV-2 infection and tested this in a primary human lung microvascular endothelial (HLMVEC) cell model. Our results indicate that HLMVEC are not susceptible to SARS-CoV-2 infection since no expression of viral proteins and no newly produced virus was detected. In addition, exposure to the virus did not induce endothelial activation as evidenced by a lack of adhesion molecule, E-selectin, VCAM-1, ICAM-1, and inflammatory cytokine IL-6 induction. Incubation of endothelial cells with the pro-inflammatory AT-derived mediator, leptin, prior to virus inoculation, did not alter the expression of endothelial SARS-CoV-2 entry receptors and did not alter their susceptibility to infection. Furthermore, it did not induce inflammatory activation of endothelial cells. To verify if the lack of activated phenotype in the presence of adipokines was not leptin-specific, we exposed endothelial cells to plasma obtained from critically ill obese COVID-19 patients. Plasma exposure did not result in E-selectin, VCAM-1, ICAM-1, or IL-6 induction. Together our results strongly suggest that aberrant inflammatory endothelial responses are not mounted by direct SARS-CoV-2 infection of endothelial cells, even in the presence of leptin and other mediators of obesity. Instead, endothelial activation associated with COVID-19 is likely a result of inflammatory responses initiated by other cells. Further studies are required to investigate the mechanisms regulating endothelial behavior in COVID-19 and the mechanisms driving severe disease in obese individuals.


Asunto(s)
COVID-19 , Selectina E , Células Endoteliales , Humanos , Molécula 1 de Adhesión Intercelular , Interleucina-6 , Pulmón/irrigación sanguínea , Obesidad , SARS-CoV-2 , Molécula 1 de Adhesión Celular Vascular
10.
Am J Physiol Renal Physiol ; 322(3): F309-F321, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1799210

RESUMEN

Substantial evidence has supported the role of endothelial cell (EC) activation and dysfunction in the development of hypertension, chronic kidney disease (CKD), and lupus nephritis (LN). In both humans and experimental models of hypertension, CKD, and LN, ECs become activated and release potent mediators of inflammation including cytokines, chemokines, and reactive oxygen species that cause EC dysfunction, tissue damage, and fibrosis. Factors that activate the endothelium include inflammatory cytokines, mechanical stretch, and pathological shear stress. These signals can activate the endothelium to promote upregulation of adhesion molecules, such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, which promote leukocyte adhesion and migration to the activated endothelium. More importantly, it is now recognized that some of these signals may in turn promote endothelial antigen presentation through major histocompatibility complex II. In this review, we will consider in-depth mechanisms of endothelial activation and the novel mechanism of endothelial antigen presentation. Moreover, we will discuss these proinflammatory events in renal pathologies and consider possible new therapeutic approaches to limit the untoward effects of endothelial inflammation in hypertension, CKD, and LN.


Asunto(s)
Hipertensión , Nefritis Lúpica , Insuficiencia Renal Crónica , Citocinas/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Femenino , Humanos , Hipertensión/metabolismo , Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Nefritis Lúpica/metabolismo , Masculino , Insuficiencia Renal Crónica/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
11.
J Appl Physiol (1985) ; 132(5): 1297-1309, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1794427

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can increase arterial stiffness 3-4 wk following infection, even among young, healthy adults. However, the long-term impacts of SARS-CoV-2 infection on cardiovascular health and the duration of recovery remain unknown. The purpose of this study was to elucidate potential long-lasting effects of SARS-CoV-2 infection on markers of arterial stiffness among young adults during the 6 mo following infection. Assessments were performed at months 1, 2, 3, 4, and ∼6 following SARS-CoV-2 infection. Doppler ultrasound was used to measure carotid-femoral pulse wave velocity (cfPWV) and carotid stiffness, and arterial tonometry was used to measure central blood pressures and aortic augmentation index at a heart rate of 75 beats·min-1 (AIx@HR75). Vascular (VCAM-1) and intracellular (ICAM-1) adhesion molecules were analyzed as circulating markers of arterial stiffness. From months 1-6, a significant reduction in cfPWV was observed (month 1: 5.70 ± 0.73 m·s-1; month 6: 4.88 ± 0.65 m·s-1; P < 0.05) without any change in carotid stiffness measures. Reductions in systolic blood pressure (month 1: 123 ± 8 mmHg; month 6: 112 ± 11 mmHg) and mean arterial pressure (MAP; month 1: 97 ± 6 mmHg; month 6: 86 ± 7 mmHg) were observed (P < 0.05), although AIx@HR75 did not change over time. The month 1-6 change in cfPWV and MAP were correlated (r = 0.894; P < 0.001). A reduction in VCAM-1 was observed at month 3 compared with month 1 (month 1: 5,575 ± 2,242 pg·mL-1; month 3: 4,636 ± 1,621 pg·mL-1; P < 0.05) without a change in ICAM-1. A reduction in cfPWV was related with MAP, and some indicators of arterial stiffness remain elevated for several months following SARS-CoV-2 infection, possibly contributing to prolonged recovery and increased cardiovascular health risks.NEW & NOTEWORTHY We sought to investigate potential long-lasting effects of SARS-CoV-2 infection on markers of arterial stiffness among young adults for 6 mo following infection. Carotid femoral pulse wave velocity was significantly reduced while carotid stiffness measures remained unaltered over the 6-mo period. These findings suggest several months of recovery from infection may be necessary for young adults to improve various markers of arterial stiffness, possibly contributing to cardiovascular health and recovery among those infected with SARS-CoV-2.


Asunto(s)
COVID-19 , Rigidez Vascular , Presión Sanguínea/fisiología , Humanos , Molécula 1 de Adhesión Intercelular , Análisis de la Onda del Pulso , SARS-CoV-2 , Molécula 1 de Adhesión Celular Vascular , Rigidez Vascular/fisiología , Adulto Joven
12.
Am J Obstet Gynecol ; 227(2): 277.e1-277.e16, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1757079

RESUMEN

BACKGROUND: COVID-19 presents a spectrum of signs and symptoms in pregnant women that might resemble preeclampsia. Differentiation between severe COVID-19 and preeclampsia is difficult in some cases. OBJECTIVE: To study biomarkers of endothelial damage, coagulation, innate immune response, and angiogenesis in preeclampsia and COVID-19 in pregnancy in addition to in vitro alterations in endothelial cells exposed to sera from pregnant women with preeclampsia and COVID-19. STUDY DESIGN: Plasma and sera samples were obtained from pregnant women with COVID-19 infection classified into mild (n=10) or severe (n=9) and from women with normotensive pregnancies as controls (n=10) and patients with preeclampsia (n=13). A panel of plasmatic biomarkers was assessed, including vascular cell adhesion molecule-1, soluble tumor necrosis factor-receptor I, heparan sulfate, von Willebrand factor antigen (activity and multimeric pattern), α2-antiplasmin, C5b9, neutrophil extracellular traps, placental growth factor, soluble fms-like tyrosine kinase-1, and angiopoietin 2. In addition, microvascular endothelial cells were exposed to patients' sera, and changes in the cell expression of intercellular adhesion molecule 1 on cell membranes and von Willebrand factor release to the extracellular matrix were evaluated through immunofluorescence. Changes in inflammation cell signaling pathways were also assessed by of p38 mitogen-activated protein kinase phosphorylation. Statistical analysis included univariate and multivariate methods. RESULTS: Biomarker profiles of patients with mild COVID-19 were similar to those of controls. Both preeclampsia and severe COVID-19 showed significant alterations in most circulating biomarkers with distinctive profiles. Whereas severe COVID-19 exhibited higher concentrations of vascular cell adhesion molecule-1, soluble tumor necrosis factor-α receptor I, heparan sulfate, von Willebrand factor antigen, and neutrophil extracellular traps, with a significant reduction of placental growth factor compared with controls, preeclampsia presented a marked increase in vascular cell adhesion molecule-1 and soluble tumor necrosis factor-α receptor I (significantly increased compared with controls and patients with severe COVID-19), with a striking reduction in von Willebrand factor antigen, von Willebrand factor activity, and α2-antiplasmin. As expected, reduced placental growth factor, increased soluble fms-like tyrosine kinase-1 and angiopoietin 2, and a very high soluble fms-like tyrosine kinase-1 to placental growth factor ratio were also observed in preeclampsia. In addition, a significant increase in C5b9 and neutrophil extracellular traps was also detected in preeclampsia compared with controls. Principal component analysis demonstrated a clear separation between patients with preeclampsia and the other groups (first and second components explained 42.2% and 13.5% of the variance), mainly differentiated by variables related to von Willebrand factor, soluble tumor necrosis factor-receptor I, heparan sulfate, and soluble fms-like tyrosine kinase-1. Von Willebrand factor multimeric analysis revealed the absence of von Willebrand factor high-molecular-weight multimers in preeclampsia (similar profile to von Willebrand disease type 2A), whereas in healthy pregnancies and COVID-19 patients, von Willebrand factor multimeric pattern was normal. Sera from both preeclampsia and severe COVID-19 patients induced an overexpression of intercellular adhesion molecule 1 and von Willebrand factor in endothelial cells in culture compared with controls. However, the effect of preeclampsia was less pronounced than the that of severe COVID-19. Immunoblots of lysates from endothelial cells exposed to mild and severe COVID-19 and preeclampsia sera showed an increase in p38 mitogen-activated protein kinase phosphorylation. Patients with severe COVID-19 and preeclampsia were statistically different from controls, suggesting that both severe COVID-19 and preeclampsia sera can activate inflammatory signaling pathways. CONCLUSION: Although similar in in vitro endothelial dysfunction, preeclampsia and severe COVID-19 exhibit distinctive profiles of circulating biomarkers related to endothelial damage, coagulopathy, and angiogenic imbalance that could aid in the differential diagnosis of these entities.


Asunto(s)
Biomarcadores , COVID-19 , Preeclampsia , Angiopoyetina 2 , Biomarcadores/sangre , COVID-19/diagnóstico , Células Endoteliales , Femenino , Heparitina Sulfato , Humanos , Molécula 1 de Adhesión Intercelular , Factor de Crecimiento Placentario , Preeclampsia/diagnóstico , Embarazo , Factor de Necrosis Tumoral alfa , Molécula 1 de Adhesión Celular Vascular , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Proteínas Quinasas p38 Activadas por Mitógenos , Factor de von Willebrand
13.
J Med Virol ; 94(7): 3112-3120, 2022 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1729154

RESUMEN

There is growing evidence that angiotensin-converting enzyme 2 is highly expressed on endothelial cells, endothelial dysfunction plays a critical role in coronavirus disease 2019 (COVID-19) progression, but laboratory evidence is still lacking. This study established a multicenter retrospective cohort of 966 COVID-19 patients from three hospitals in Wuhan, China. We found that male (62.8% vs. 46.5%), old age [72 (17) vs. 60.5 (21)], and coexisting chronic diseases (88.5% vs. 60.0%) were associated with poor clinical prognosis in COVID-19. Furthermore, the deteriorated patients exhibited more severe multiorgan damage, coagulation dysfunction, and extensive inflammation. Additionally, a cross-sectional study including 41 non-COVID-19 controls and 39 COVID-19 patients assayed endothelial function parameters in plasma and showed that COVID-19 patients exhibited elevated vascular cell adhesion molecule-1 (VCAM-1) (median [IQR]: 0.32 [0.27] vs. 0.17 [0.11] µg/ml, p < 0.001), E-selectin (21.06 [12.60] vs. 11.01 [4.63] ng/ml, p < 0.001), tissue-type plasminogen activator (tPA) (0.22 [0.12] vs. 0.09 [0.04] ng/ml, p < 0.001), and decreased plasminogen activator inhibitor-1 (0.75 [1.31] vs 6.20 [5.34] ng/ml, p < 0.001), as compared to normal controls. Moreover, VCAM-1 was positively correlated with d-dimer (R = 0.544, p < 0.001); tPA was positively correlated with d-dimer (R = 0.800, p < 0.001) and blood urea nitrogen (R = 0.638, p < 0.001). Our findings further confirm the strong association between endothelial dysfunction and poor prognosis of COVID-19, which offers a rationale for targeting endothelial dysfunction as a therapeutic strategy for COVID-19.


Asunto(s)
COVID-19 , Enfermedades Vasculares , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , COVID-19/complicaciones , COVID-19/diagnóstico , Estudios Transversales , Progresión de la Enfermedad , Células Endoteliales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Molécula 1 de Adhesión Celular Vascular , Enfermedades Vasculares/virología
14.
Arthritis Rheumatol ; 74(7): 1132-1138, 2022 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1694821

RESUMEN

OBJECTIVE: While endothelial dysfunction has been implicated in the widespread thromboinflammatory complications of COVID-19, the upstream mediators of endotheliopathy remain, for the most part, unknown. This study was undertaken to identify circulating factors contributing to endothelial cell activation and dysfunction in COVID-19. METHODS: Human endothelial cells were cultured in the presence of serum or plasma from 244 patients hospitalized with COVID-19 and plasma from 100 patients with non-COVID-19-related sepsis. Cell adhesion molecules (E-selectin, vascular cell adhesion molecule 1, and intercellular adhesion molecule 1 [ICAM-1]) were quantified using in-cell enzyme-linked immunosorbent assay. RESULTS: Serum and plasma from COVID-19 patients increased surface expression of cell adhesion molecules. Furthermore, levels of soluble ICAM-1 and E-selectin were elevated in patient serum and correlated with disease severity. The presence of circulating antiphospholipid antibodies was a strong marker of the ability of COVID-19 serum to activate endothelium. Depletion of total IgG from antiphospholipid antibody-positive serum markedly reduced the up-regulation of cell adhesion molecules. Conversely, supplementation of control serum with patient IgG was sufficient to trigger endothelial activation. CONCLUSION: These data are the first to indicate that some COVID-19 patients have potentially diverse antibodies that drive endotheliopathy, providing important context regarding thromboinflammatory effects of autoantibodies in severe COVID-19.


Asunto(s)
Anticuerpos Antifosfolípidos , COVID-19 , Células Endoteliales , Anticuerpos Antifosfolípidos/inmunología , COVID-19/inmunología , Moléculas de Adhesión Celular/metabolismo , Selectina E , Células Endoteliales/metabolismo , Endotelio Vascular , Humanos , Inmunoglobulina G/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
15.
Shock ; 57(1): 95-105, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1574295

RESUMEN

BACKGROUND: Endotheliopathy is a key element in COVID-19 pathophysiology, contributing to both morbidity and mortality. Biomarkers distinguishing different COVID-19 phenotypes from sepsis syndrome remain poorly understood. OBJECTIVE: To characterize circulating biomarkers of endothelial damage in different COVID-19 clinical disease stages compared with sepsis syndrome and normal volunteers. METHODS: Patients with COVID-19 pneumonia (n = 49) were classified into moderate, severe, or critical (life-threatening) disease. Plasma samples were collected within 48 to 72 h of hospitalization to analyze endothelial activation markers, including soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1), von Willebrand Factor (VWF), A disintegrin-like and metalloprotease with thrombospondin type 1 motif no. 13 (ADAMTS-13) activity, thrombomodulin (TM), and soluble TNF receptor I (sTNFRI); heparan sulfate (HS) for endothelial glycocalyx degradation; C5b9 deposits on endothelial cells in culture and soluble C5b9 for complement activation; circulating dsDNA for neutrophil extracellular traps (NETs) presence, and α2-antiplasmin and PAI-1 as parameters of fibrinolysis. We compared the level of each biomarker in all three COVID-19 groups and healthy donors as controls (n = 45). Results in critically ill COVID-19 patients were compared with other intensive care unit (ICU) patients with septic shock (SS, n = 14), sepsis (S, n = 7), and noninfectious systemic inflammatory response syndrome (NI-SIRS, n = 7). RESULTS: All analyzed biomarkers were increased in COVID-19 patients versus controls (P < 0.001), except for ADAMTS-13 activity that was normal in both groups. The increased expression of sVCAM-1, VWF, sTNFRI, and HS was related to COVID-19 disease severity (P < 0.05). Several differences in these parameters were found between ICU groups: SS patients showed significantly higher levels of VWF, TM, sTNFRI, and NETS compared with critical COVID-19 patients and ADAMTS-13 activity was significantly lover in SS, S, and NI-SIRS versus critical COVID-19 (P < 0.001). Furthermore, α2-antiplasmin activity was higher in critical COVID-19 versus NI-SIRS (P < 0.01) and SS (P < 0.001), whereas PAI-1 levels were significantly lower in COVID-19 patients compared with NI-SIRS, S, and SS patients (P < 0.01). CONCLUSIONS: COVID-19 patients present with increased circulating endothelial stress products, complement activation, and fibrinolytic dysregulation, associated with disease severity. COVID-19 endotheliopathy differs from SS, in which endothelial damage is also a critical feature of pathobiology. These biomarkers could help to stratify the severity of COVID-19 disease and may also provide information to guide specific therapeutic strategies to mitigate endotheliopathy progression.


Asunto(s)
COVID-19/sangre , Proteína ADAMTS13/sangre , Anciano , Biomarcadores/sangre , Complejo de Ataque a Membrana del Sistema Complemento/análisis , ADN/sangre , Femenino , Heparitina Sulfato/sangre , Humanos , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Inhibidor 1 de Activador Plasminogénico/sangre , Estudios Prospectivos , Receptores Tipo I de Factores de Necrosis Tumoral/sangre , Sepsis/sangre , Trombomodulina/sangre , Molécula 1 de Adhesión Celular Vascular/sangre , alfa 2-Antiplasmina/análisis , Factor de von Willebrand/análisis
16.
Curr Med Chem ; 29(21): 3790-3805, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1496773

RESUMEN

BACKGROUND: Several studies have revealed the link between Coronavirus Disease 2019 (COVID-19) and endothelial dysfunction. To better understand the global pattern of this relationship, we conducted a meta-analysis on endothelial biomarkers related to COVID-19 severity. METHODS: We systematically searched the literature up to March 10, 2021, for studies investigating the association between COVID-19 severity and the following endothelial biomarkers: Intercellular Adhesion Molecule 1 (ICAM-1), Vascular Cell Adhesion Molecule 1 (VCAM-1), E-selectin, P-selectin, Von Willebrand Factor Antigen (VWFAg), soluble Thrombomodulin (sTM), Mid-regional pro-adrenomedullin (MR-proADM), and Angiopoietin-2 (Ang-2). Pooled estimates and mean differences (PMD) for each biomarker were reported. RESULTS: A total of 27 studies (n=2213 patients) were included. Critically ill patients presented with higher levels of MR-proADM (PMD: 0.71 nmol/L, 95% CI: 0.22 to 1.20 nmol/L, p=0.02), E-selectin (PMD: 13,32 pg/ml, 95% CI: 4,89 to 21,75 pg/ml, p=0.008), VCAM-1 (PMD: 479 ng/ml, 95% CI: 64 to 896 ng/ml, p=0.03), VWF-Ag (PMD: 110.5 IU/dl, 95% CI: 44.8 to 176.1 IU/dl, p=0.04) and Ang-2 (PMD: 2388 pg/ml, 95% CI: 1121 to 3655 pg/ml, p=0.003), as compared to non-critically ill ones. ICAM-1, P-selectin and thrombomodulin did not differ between the two groups (p>0.05). CONCLUSION: Endothelial biomarkers display significant heterogeneity in COVID-19 patients, with higher MR-proADM, E-selectin, VCAM-1, VWF-Ag, and Ang-2 levels being associated with increased severity. These findings strengthen the evidence on the key role of endothelial dysfunction in disease progress.


Asunto(s)
COVID-19 , Enfermedades Vasculares , Biomarcadores/metabolismo , COVID-19/diagnóstico , Selectina E/metabolismo , Endotelio Vascular/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Trombomodulina/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Enfermedades Vasculares/metabolismo , Factor de von Willebrand/análisis , Factor de von Willebrand/metabolismo
17.
J Virol ; 95(17): e0079421, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1350003

RESUMEN

Increased mortality in COVID-19 cases is often associated with microvascular complications. We have recently shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein promotes an inflammatory cytokine interleukin 6 (IL-6)/IL-6R-induced trans signaling response and alarmin secretion. Virus-infected or spike-transfected human epithelial cells exhibited an increase in senescence, with a release of senescence-associated secretory phenotype (SASP)-related inflammatory molecules. Introduction of the bromodomain-containing protein 4 (BRD4) inhibitor AZD5153 to senescent epithelial cells reversed this effect and reduced SASP-related inflammatory molecule release in TMNK-1 or EAhy926 (representative human endothelial cell lines), when cells were exposed to cell culture medium (CM) derived from A549 cells expressing SARS-CoV-2 spike protein. Cells also exhibited a senescence phenotype with enhanced p16, p21, and senescence-associated ß-galactosidase (SA-ß-Gal) expression and triggered SASP pathways. Inhibition of IL-6 trans signaling by tocilizumab and inhibition of inflammatory receptor signaling by the Bruton's tyrosine kinase (BTK) inhibitor zanubrutinib, prior to exposure of CM to endothelial cells, inhibited p21 and p16 induction. We also observed an increase in reactive oxygen species (ROS) in A549 spike-transfected and endothelial cells exposed to spike-transfected CM. ROS generation in endothelial cell lines was reduced after treatment with tocilizumab and zanubrutinib. Cellular senescence was associated with an increased level of the endothelial adhesion molecules vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), which have in vitro leukocyte attachment potential. Inhibition of senescence or SASP function prevented VCAM-1/ICAM-1 expression and leukocyte attachment. Taken together, we identified that human endothelial cells exposed to cell culture supernatant derived from SARS-CoV-2 spike protein expression displayed cellular senescence markers, leading to enhanced leukocyte adhesion. IMPORTANCE The present study was aimed at examining the underlying mechanism of extrapulmonary manifestations of SARS-CoV-2 spike protein-associated pathogenesis, with the notion that infection of the pulmonary epithelium can lead to mediators that drive endothelial dysfunction. We utilized SARS-CoV-2 spike protein expression in cultured human hepatocytes (Huh7.5) and pneumocytes (A549) to generate conditioned culture medium (CM). Endothelial cell lines (TMNK-1 or EAhy926) treated with CM exhibited an increase in cellular senescence markers by a paracrine mode and led to leukocyte adhesion. Overall, the link between these responses in endothelial cell senescence and a potential contribution to microvascular complication in productively SARS-CoV-2-infected humans is implicated. Furthermore, the use of inhibitors (BTK, IL-6, and BRD4) showed a reverse effect in the senescent cells. These results may support the selection of potential adjunct therapeutic modalities to impede SARS-CoV-2-associated pathogenesis.


Asunto(s)
Senescencia Celular , Células Endoteliales/metabolismo , Leucocitos/metabolismo , Comunicación Paracrina , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células A549 , Adhesión Celular , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Células Endoteliales/patología , Células Endoteliales/virología , Compuestos Heterocíclicos con 2 Anillos/farmacología , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-6/metabolismo , Leucocitos/patología , Leucocitos/virología , Piperazinas/farmacología , Pirazoles , Piridazinas , Especies Reactivas de Oxígeno/metabolismo , Receptores de Interleucina-6/metabolismo , Transducción de Señal , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
18.
Signal Transduct Target Ther ; 6(1): 266, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1307323

RESUMEN

Coronavirus disease 2019 (COVID-19) is regarded as an endothelial disease (endothelialitis) with its patho-mechanism being incompletely understood. Emerging evidence has demonstrated that endothelial dysfunction precipitates COVID-19 and its accompanying multi-organ injuries. Thus, pharmacotherapies targeting endothelial dysfunction have potential to ameliorate COVID-19 and its cardiovascular complications. The objective of the present study is to evaluate whether kruppel-like factor 2 (KLF2), a master regulator of vascular homeostasis, represents a therapeutic target for COVID-19-induced endothelial dysfunction. Here, we demonstrate that the expression of KLF2 was reduced and monocyte adhesion was increased in endothelial cells treated with COVID-19 patient serum due to elevated levels of pro-adhesive molecules, ICAM1 and VCAM1. IL-1ß and TNF-α, two cytokines elevated in cytokine release syndrome in COVID-19 patients, decreased KLF2 gene expression. Pharmacologic (atorvastatin and tannic acid) and genetic (adenoviral overexpression) approaches to augment KLF2 levels attenuated COVID-19-serum-induced increase in endothelial inflammation and monocyte adhesion. Next-generation RNA-sequencing data showed that atorvastatin treatment leads to a cardiovascular protective transcriptome associated with improved endothelial function (vasodilation, anti-inflammation, antioxidant status, anti-thrombosis/-coagulation, anti-fibrosis, and reduced angiogenesis). Finally, knockdown of KLF2 partially reversed the ameliorative effect of atorvastatin on COVID-19-serum-induced endothelial inflammation and monocyte adhesion. Collectively, the present study implicates loss of KLF2 as an important molecular event in the development of COVID-19-induced vascular disease and suggests that efforts to augment KLF2 levels may be therapeutically beneficial.


Asunto(s)
COVID-19 , Células Endoteliales de la Vena Umbilical Humana , Factores de Transcripción de Tipo Kruppel/biosíntesis , SARS-CoV-2 , COVID-19/genética , COVID-19/metabolismo , COVID-19/patología , COVID-19/prevención & control , Citocinas/biosíntesis , Citocinas/genética , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Células Endoteliales de la Vena Umbilical Humana/virología , Humanos , Molécula 1 de Adhesión Intercelular/biosíntesis , Molécula 1 de Adhesión Intercelular/genética , Factores de Transcripción de Tipo Kruppel/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Molécula 1 de Adhesión Celular Vascular/biosíntesis , Molécula 1 de Adhesión Celular Vascular/genética
19.
J Clin Invest ; 131(6)2021 03 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1172783

RESUMEN

Monocyte homing to the liver and adhesion to the liver sinusoidal endothelial cells (LSECs) are key elements in nonalcoholic steatohepatitis (NASH) pathogenesis. We reported previously that VCAM-1 mediates monocyte adhesion to LSECs. However, the pathogenic role of VCAM-1 in NASH is unclear. Herein, we report that VCAM-1 was a top upregulated adhesion molecule in the NASH mouse liver transcriptome. Open chromatin landscape profiling combined with genome-wide transcriptome analysis showed robust transcriptional upregulation of LSEC VCAM-1 in murine NASH. Moreover, LSEC VCAM-1 expression was significantly increased in human NASH. LSEC VCAM-1 expression was upregulated by palmitate treatment in vitro and reduced with inhibition of the mitogen-activated protein 3 kinase (MAP3K) mixed lineage kinase 3 (MLK3). Likewise, LSEC VCAM-1 expression was reduced in the Mlk3-/- mice with diet-induced NASH. Furthermore, VCAM-1 neutralizing Ab or pharmacological inhibition attenuated diet-induced NASH in mice, mainly via reducing the proinflammatory monocyte hepatic population as examined by mass cytometry by time of flight (CyTOF). Moreover, endothelium-specific Vcam1 knockout mice were also protected against NASH. In summary, lipotoxic stress enhances the expression of LSEC VCAM-1, in part, through MLK3 signaling. Inhibition of VCAM-1 was salutary in murine NASH and might serve as a potential therapeutic strategy for human NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/etiología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Anticuerpos Neutralizantes/administración & dosificación , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Palmitatos/toxicidad , ARN Mensajero/genética , Regulación hacia Arriba/efectos de los fármacos , Molécula 1 de Adhesión Celular Vascular/antagonistas & inhibidores , Molécula 1 de Adhesión Celular Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA